2,230 research outputs found

    Off-Diagonal Long-Range Order: Meissner Effect and Flux Quantization

    Full text link
    There has been a proof by Sewell that the hypothesis of off-diagonal long-range order in the reduced density matrix ρ2\rho _2 implies the Meissner effect. We present in this note an elementary and straightforward proof that not only the Meissner effect but also the property of magnetic flux quantization follows from the hypothesis. It is explicitly shown that the two phenomena are closely related, and phase coherence is the origin for both.Comment: 11 pages, Latex fil

    Modelling of Phase Separation in Alloys with Coherent Elastic Misfit

    Full text link
    Elastic interactions arising from a difference of lattice spacing between two coherent phases can have a strong influence on the phase separation (coarsening) of alloys. If the elastic moduli are different in the two phases, the elastic interactions may accelerate, slow down or even stop the phase separation process. If the material is elastically anisotropic, the precipitates can be shaped like plates or needles instead of spheres and can form regular precipitate superlattices. Tensions or compressions applied externally to the specimen may have a strong effect on the shapes and arrangement of the precipitates. In this paper, we review the main theoretical approaches that have been used to model these effects and we relate them to experimental observations. The theoretical approaches considered are (i) `macroscopic' models treating the two phases as elastic media separated by a sharp interface (ii) `mesoscopic' models in which the concentration varies continuously across the interface (iii) `microscopic' models which use the positions of individual atoms.Comment: 106 pages, in Latex, figures available upon request, e-mail addresses: [email protected], [email protected], [email protected], submitted to the Journal of Statistical Physic

    Asymptotic behavior of the generalized Becker-D\"oring equations for general initial data

    Full text link
    We prove the following asymptotic behavior for solutions to the generalized Becker-D\"oring system for general initial data: under a detailed balance assumption and in situations where density is conserved in time, there is a critical density ρs\rho_s such that solutions with an initial density ρ0ρs\rho_0 \leq \rho_s converge strongly to the equilibrium with density ρ0\rho_0, and solutions with initial density ρ0>ρs\rho_0 > \rho_s converge (in a weak sense) to the equilibrium with density ρs\rho_s. This extends the previous knowledge that this behavior happens under more restrictive conditions on the initial data. The main tool is a new estimate on the tail of solutions with density below the critical density

    Spin-Raising Operators and Spin-3/2 Potentials in Quantum Cosmology

    Get PDF
    Local boundary conditions involving field strengths and the normal to the boundary, originally studied in anti-de Sitter space-time, have been recently considered in one-loop quantum cosmology. This paper derives the conditions under which spin-raising operators preserve these local boundary conditions on a 3-sphere for fields of spin 0,1/2,1,3/2 and 2. Moreover, the two-component spinor analysis of the four potentials of the totally symmetric and independent field strengths for spin 3/2 is applied to the case of a 3-sphere boundary. It is shown that such boundary conditions can only be imposed in a flat Euclidean background, for which the gauge freedom in the choice of the potentials remains.Comment: 13 pages, plain-tex, recently appearing in Classical and Quantum Gravity, volume 11, April 1994, pages 897-903. Apologies for the delay in circulating the file, due to technical problems now fixe

    Self-organized criticality in boson clouds around black holes

    Full text link
    Boson clouds around black holes exhibit interesting physical phenomena through the Penrose process of superradiance, leading to black hole spin-down. Axionic clouds are of particular interest, since the axion Compton wavelength could be comparable to the Schwarzschild radius, leading to the formation of "gravitational atoms" with a black hole nucleus. These clouds collapse under certain conditions, leading to a "Bosenova". We model the dynamics of such unstable boson clouds by a simple cellular automaton and show that it exhibits self-organized criticality. Our results suggest that the evolution through the black hole Regge plane is due to self-organized criticality

    An Information--Theoretic Equality Implying the Jarzynski Relation

    Full text link
    We derive a general information-theoretic equality for a system undergoing two projective measurements separated by a general temporal evolution. The equality implies the non-negativity of the mutual information between the measurement outcomes of the earlier and later projective measurements. We show that it also contains the Jarzynski relation between the average exponential of the thermodynamical work and the exponential of the difference between the initial and final free energy. Our result elucidates the information-theoretic underpinning of thermodynamics and explains why the Jarzynski relation holds identically both quantumly as well as classically.Comment: 2 pages, no figure

    Relations between Entropies Produced in Nondeterministic Thermodynamic Processes

    Get PDF
    Landauer's erasure principle is generalized to nondeterministic processes on systems having an arbitrary number of non-symmetrical logical states. The condition that the process is applied in the same way, irrespective of the initial logical state, imposes some restrictions on the individual heat exchanges associated with each possible transition. The complete set of such restrictions are derived by a statistical analysis of the phase-space flow induced by the process. Landauer's erasure principle can be derived from and is a special case of these.Comment: 12 pages with one figure; a final major revision in presentation; physical assumptions are clarified no

    Magnification relations for Kerr lensing and testing Cosmic Censorship

    Full text link
    A Kerr black hole with mass parameter m and angular momentum parameter a acting as a gravitational lens gives rise to two images in the weak field limit. We study the corresponding magnification relations, namely the signed and absolute magnification sums and the centroid up to post-Newtonian order. We show that there are post-Newtonian corrections to the total absolute magnification and centroid proportional to a/m, which is in contrast to the spherically symmetric case where such corrections vanish. Hence we also propose a new set of lensing observables for the two images involving these corrections, which should allow measuring a/m with gravitational lensing. In fact, the resolution capabilities needed to observe this for the Galactic black hole should in principle be accessible to current and near-future instrumentation. Since a/m >1 indicates a naked singularity, a most interesting application would be a test of the Cosmic Censorship conjecture. The technique used to derive the image properties is based on the degeneracy of the Kerr lens and a suitably displaced Schwarzschild lens at post-Newtonian order. A simple physical explanation for this degeneracy is also given.Comment: 13 pages, version 2: references added, minor changes. To appear in Phys. Rev.

    Horizon Formation in High-Energy Particles Collision

    Full text link
    We investigate a classical formation of a trapped surface in 4-dimensional flat space-time in a process of a non-head-on collision of two high-energy particles which are treated as Aichelburg-Sexl shock waves. From the condition of the horizon volume local maximality an equation for the trapped surface is deduced. Using a known solution on the shocks we find a time-dependent solution describing the trapped surface between the shocks. We analyze the horizon appearance and evolution. Obtained results may describe qualitatively the horizon formation in higher dimensional space-time.Comment: Latex2e, 8 pages, 6 figures, references adde

    The analyticity region of the hard sphere gas. Improved bounds

    Full text link
    We find an improved estimate of the radius of analyticity of the pressure of the hard-sphere gas in dd dimensions. The estimates are determined by the volume of multidimensional regions that can be numerically computed. For d=2d=2, for instance, our estimate is about 40% larger than the classical one.Comment: 4 pages, to appear in Journal of Statistical Physic
    corecore